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• History and Background
• Overview of RF Photonics
• Work at JPL
• Whispering Gallery Mode (WGM)

resonators
• Devices and architectures
• Summary
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Antenna Remoting in DSN

* Reduce the amount of equipment at the antenna.
* Share redundant hardware, lower hardware cost.

* Share signal processing and maintenance personnel, lower operation cost. 

* Coherently array widely separated antennas to increase receiving sensitivity.
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Why Photonics
• The bandwidth is essentially ‘unlimited’
• Components and devices are have small size, low

mass, and competitive power efficiency
• Waveguides are extremely low loss (0.2 dB/km

for optical fibers)
• Photon detection at optical wavelength is very

efficient
• EMI absent, (or significantly mitigated)
• Cost is becoming competitive (due to

communications industry push)
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Examples of Photonics Functions for Microwave and
Millimeter Wave Systems

• Signal generation
• Up/down conversion
• Filtering
• Phase shifting
• Switching
• True-time delays
• A/D conversion
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Examples of Photonics Functions for Microwave and
Millimeter Wave Systems

• Signal generation
• Up/down conversion
• Filtering
• Phase shifting
• Switching
• True-time delays
• A/D conversion
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Manipulation of spectral properties and tunability is important for applications

Examples of RF photonics applications: filtering, modulation, reception

laser

Electro-optical
resonator

modulator/receiver

(Electro) optical
resonator filter

High-speed
photodetector/mixer(Photonic LO)

Microwave in

(Optical filter tuning)

Microwave/ IF out
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OEO as a Generic Frequency Control Device
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Ka-Band / Millimeter-wave OEO

• Oscillating up to 33 GHz.

• Phase noise less than -30dBc/Hz at 10Hz and
-120dBc/Hz at 10 KHz from both 28.29GHz and
33.16GHz carriers.

• Phase noise of mm-wave OEO is 20dB lower
than that of the HP synthesizer with a 4¥
multiplier.
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CURVATURE CONFINEMENT

ALLOWS Q approaching LIMIT BY

MATERIAL ATTENUATION:

Q=107-109 in spheres and toroids

1mm

Low eccentricity spheroid
D = 400mm; FSR 2.5GHz

Oblate spheroid
D = 160mm; FSR ~400GHz

Oblate spheroid
D = 1.3mm; FSR 33GHz

Whispering-gallery modes:
ultra-high Q in optical resonators

Silica
Doped
silica

Lithium

niobate

vs. 103 - 105 in microrings 
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      Whispering Gallery Mode resonances are
electromagnetic resonances which occur in circularly
symmetric dielectric by the mean of the light is
trapped in a circling orbit by continuously totally
internally reflected from the surface of the resonator.
The WGM usually is characterized by the mode
number      ,        and
              is the radial mode numbers
              is the angular mode numbers
        m   is azimuthal mode numbers
      We would like to excite the modes that are
 confined close to equator of a sphere or the edge of the toroidal disk
 resonator, therefore we interested in exciting the modes with low n and
 m =
                                                                                M.E.Tobar,J.D.Anstie and J.G.Hartnett
                                                                                                                       IEEETransactionon Ultrasonics,               

        Ferroelectronics and Freq. Control
                                                                                                                       Nov 2003
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Whispering Gallery Modes

25== ml10== ml5== ml



Sept.  14, 04 Lute Maleki

Quantum Sciences and Technology Group

California Institute of TechnologyCalifornia Institute of Technology

        Normalized modal distributions for l = 25, and m = 24,
23, and 22. At                , the mode is Gaussian and
centered about the equator. As           increases, the
energy distribution spreads further from the equator.
Longitudinal cross section (x-z plane) showing WGM for
(l,m) =(25,24), (25,23), and (25,22). The trend shows the
concentration of field expands away from the equator as
is increased.

0=- ml
ml -
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Microsphere
cavity

Two-level system in the
evanescent

field of
WG mode
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High-Q Photonic Filters

• JPL has previously demonstrated
micro-resonators with Q> 109

– Diameter 50-500 µm
– Capable of supporting any optical

carrier
– RF frequency 5 GHz to 400 GHz

obtained

• Efficient fiber coupling to micro-
resonators achieved

– Low insertion loss, simple approach to
implement

– Amenable to “mass production”
– Critical coupling for highest efficiency

possible
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Spectrum of whispering-gallery modes in spheroidal
 dielectric microcavity (D = 160mm).

Fiber pigtailed microspherical resonator with 250 µm
Diameter.
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Filters
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• Large quality factor:

• Large tuning range: 20 GHz per 150 V

• Insertion loss: 4-7 dB

• Small size: 1-12 mm

• High order filter realized

Tunable Lithium Niobate Filters
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Photonic application: video transmission experiment

(A.A.Savchenkov et al., Electron. Lett. 39,
389 (2003))
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Third Order Filter
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Tunable filter based on three lithium niobate resonators
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Modulators
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RF in 1 RF in 2

Light in Light out

DC bias/ ramp

Schematic of optical and microwave mode overlap, microwave
resonance,  and example of embodiment
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(RF limited
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110MHz)

Operation of WG resonance modulator: high-Q
optical whispering-gallery modes superimposed with
mm-wave microstrip cavity
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Integration

(Savchenkov, et al
Electronic Letters
2003)
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Theoretical Q Values
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New Q Record

Q = 2 x 1010
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Tunable Delays
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87Rb D1-line (52S1/2  ‡ 52P1/2),
F = 2 ‡ F’ = 1

B(z) = constant,
B(x)= 0, B(y)=0

Control beam:  w1 ( s + )

Probe beam:    w2 ( s - )

DW = w1 - w2 = 2 m gg B

(where m = 1.4 MHz/G, and gg is the ground state Lande-factor)

m = 0

m = +1

m = -1

F  = 2

F’ = 1

DW/G = 1.4 MHz/G

EIT Detection

m = -2

m = +2

0.93 MHz/G

y

z

 x

ge = -1/6

gg = 1/2

~400 Mhz

Doppler Width

Rb Vapor
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An analogy with EIT in quantum systems: 
interference of decays
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WGM PPLN resonator
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Manipulation of spectral properties and tunability is important for applications

Examples of RF photonics applications: filtering, modulation, reception

laser

Electro-optical
resonator

modulator/receiver

(Electro) optical
resonator filter

High-speed
photodetector/mixer(Photonic LO)

Microwave in

(Optical filter tuning)

Microwave/ IF out



Sept.  14, 04 Lute Maleki

Quantum Sciences and Technology Group

California Institute of TechnologyCalifornia Institute of Technology

Potential Applications
• Multi-spectral radar receiver
• Wide-band receivers for planetary communication

networks
• RF antenna remoting for the DSN
• Large arrays
• Photonic signal processing
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